Z bazy Vandenberg w Stanach Zjednoczonych wystartowała rakieta Falcon 9, na której pokładzie znalazł się satelita PW-Sat2, skonstruowany przez studentów Politechniki Warszawskiej. To czwarty polski satelita w kosmosie, a drugi zbudowany na PW.
Satelita PW-Sat2, skonstruowany przez członków Studenckiego Koła Astronautycznego Politechniki Warszawskiej, w przestrzeń kosmiczną wystartował po godz. 19.30 czasu polskiego wraz z misją SSO-A. Na orbitę o wysokości ok. 575 km wyniosła go rakieta Falcon 9 firmy SpaceX.
Falcon 9 launches 64 payloads to orbit for the Spaceflight SSO-A: SmallSat Express mission, marking SpaceX’s 19th launch in 2018. pic.twitter.com/oeX98v1t2N
Czytaj także: Misja SSO-A. Udało się nawiązać kontakt z polskim satelitą!
— SpaceX (@SpaceX) 4 grudnia 2018
Czwarty polski satelita w kosmosie
PW-Sat2 jest czwartym polskim satelitą w kosmosie, a drugim studenckim, zbudowanym na Politechnice Warszawskiej.
W ramach misji SSO-A wraz z satelitą PW-Sat2 w kosmos zostało wyniesionych 48 innych satelitów typu CubeSat (miniaturowe satelity) i 15 małych satelitów, które po wejściu rakiety na orbitę będą stopniowo uwalniane. Na rakiecie wyniesiony został też m.in. satelita ESEO/S-50 zrealizowany w ramach programu edukacyjnego Europejskiej Agencji Kosmicznej, dla którego system telekomunikacyjny przygotowano w znacznej mierze na Politechnice Wrocławskiej. Wystrzelony został też m.in. satelita obserwacji Ziemi ICEYE-X2 – zaprojektowany przez fińską spółkę ICEYE, który powstał przy współpracy z polskim przedsiębiorstwem Creotech Instruments S.A.
Podejmując się budowy swojego kolejnego satelity studenci PW włączyli się do walki kosmicznymi śmieciami. Chodzi o obiekty, które po zakończeniu własnej misji pozostają na orbicie i zagrażają innym, wciąż czynnym satelitom (bo nie można już nimi sterować). Ponieważ działalność człowieka w kosmosie jest prężna, tego typu obiektów w kosmosie przybywa. Naukowcy na całym świecie szukają metod, które pomogą ten problem rozwiązać. Studenci z Warszawy postanowili stworzyć system, który w przyszłości może problem minimalizować i zapobiegać powstawaniu kosmicznych śmieci zagrażających np. astronautom na Międzynarodowej Stacji Kosmicznej (ISS).
Cele „polskiej” misji
Najważniejszym zadaniem studenckiego satelity jest przetestowanie tzw. żagla deorbitacyjnego, którego rozłożenie spowoduje zwiększenie powierzchni PW-Sat2 i jego oporu aerodynamicznego, a w konsekwencji stopniowe obniżanie orbity satelity. To pozwoli skrócić czas jego przebywania na orbicie z przeszło 15 lat do kilkunastu miesięcy.
Otwarcie żagla planowane jest na ok. 40 dni po starcie. PW-Sat2 zaprogramowany jest tak, że samoczynnie otworzy żagiel. W ten sposób studenci zabezpieczyli się na ewentualność awarii systemu komunikacji czy nawet głównego komputera pokładowego. Po otwarciu żagla PW-Sat2 zacznie proces deorbitacji, aż spłonie w atmosferze ziemskiej.
Dzięki amerykańsko-kanadyjskiemu systemowi obrony lotniczej NORAD, będzie wiadomo, jak zmienia się orbita satelity pod wpływem otwartego żagla. W ten sposób studenci sprawdzą, jak bardzo żagiel jest efektywny. Dane z pozostałych eksperymentów, przeprowadzonych przy użyciu satelity, będą przesyłane na Ziemię radiowo i zebrane jeszcze przed otwarciem żagla.
Jak powstała PW-Sat2?
Prace nad satelitą PW-Sat2 zespół złożony ze studentów z różnych wydziałów Politechniki Warszawskiej rozpoczął w 2013 roku. Przez ponad 5 lat trwania projektu PW-Sat2 wzięło w nim udział ponad 100 osób. Wcześniej – w lutym 2012 roku – na orbicie okołoziemskiej znalazł się pierwszy polski satelita PW-Sat, również zbudowany przez studentów Politechniki Warszawskiej. Aktywny kontakt z satelitą trwał około pół roku od momentu umieszczenia go na orbicie, po czym satelita przeszedł w stan całkowitej hibernacji. Wówczas zawiódł jeden z podsystemów, co przyczyniło się do trudności z odebraniem przez satelitę komendy otworzenia ogona deorbitacyjnego.
Fima SpaceX trzykrotnie przekładała start rakiety Falcon9 z PW-Sat2 na pokładzie. Powodem były dodatkowe inspekcje samej rakiety oraz złe warunki pogodowe, które mogłyby spowodować destabilizację rakiety, a przez to niedotarcie jej na właściwą orbitę.
Źródło: Serwis Nauka w Polsce – www.naukawpolsce.pap.pl, Autorka: Ewelina Krajczyńska